Liquid solutions thermos bottle


Vacuum flasks are thermally insulated double wall vessels. The narrow space between the two walls is evacuated which dramatically reduces thermal transfer. The near absence of air molecules liquid solutions thermos bottle thermal transfer by convection. Reflective surfaces in the vacuum space minimize radiant thermal transfer and the separation between the inner and outer wall minimizes thermal transfer by conductance.

In summary, a vacuum flask thermally decouples a flask's payload from the external environment. The most common application of vacuum flasks is the storage or transmission of cryogenic fluids such as liquid nitrogen or liquid natural gas which can be maintained at extremely liquid solutions thermos bottle low temperatures for extended durations.

National K Works specializes in designing and manufacturing vacuum flasks exclusively for thermally insulating instruments from hostile temperature environments. Vacuum flasks provide very effective thermal insulation. The insulation is passive and the largest portion of thermal transfer into the vacuum flask occurs by conductance through the neck of the inner wall and by the electrical wiring or mechanical feed through entering the vacuum flask thermal leakage.

The small amount of conductance eventually raises the inner temperature within the vacuum flask which liquid solutions thermos bottle the payload's duration within hostile high temperature environments to a finite duration. An additional form of heat gain in the vacuum flask is the heat generated by the electronics within the vacuum flask. Since the vacuum flask thermally decouples the contents of the flask from the external environment, the heat dissipated by the electronics can not escape from the vacuum flask and consequently liquid solutions thermos bottle the inner temperature within the vacuum flask which also limits the payload's duration within hostile high temperature environments.

Typical application durations are 1 to 24 hours. The duration is a liquid solutions thermos bottle of the ratio of heat gain by thermal leakage plus heat dissipated from the electronics to specific heat thermal mass within the vacuum flask. In other words, the duration can be extended by increasing the amount of specific heat within the flask. Unlimited durations can be achieved by actively cooling the flask and removing the small amount of thermal leakage into the flask plus the heat dissipated by the electronics.

Common payloads protected within a flask are electronic assemblies, detectors, sensors, batteries, motors, cameras, explosives and temperature sensitive chemicals. High temperature vacuum flask applications include insulating instruments within industrial processing ovens glass, metal, electronics, paint, cementfood processing, pharmaceutical sterilization, oil and gas wells, geothermal wells, and power generation nuclear reactors, boilers, steam lines.

For cost and time savings, many of our customers prefer to use standard temperature rated electronics housed within a vacuum flask instead of sourcing or developing special high temperature electronics without a vacuum flask.

Benefits of liquid solutions thermos bottle temperature electronics over special liquid solutions thermos bottle temperature electronics are:. The thermal insulator's function is to thermally seal the opening of the vacuum flask, displace air to reduce thermal transfer by convection, provide a feed through passage for inputs into the flask, mechanically secure the payload within liquid solutions thermos bottle flask and provide a method to extract the payload from the flask.

The insulator's material should liquid solutions thermos bottle low thermal conductivity properties, sufficient mechanical properties to support liquid solutions thermos bottle payload's weight within the flask and sufficient temperature rating to withstand the external environment's temperature.

The heat sink's function is to reduce the rate of temperature rise within the flask by absorbing and storing the thermal energy leaking into the flask and the thermal energy dissipated by the payload within the flask. Increasing the quantity of heat sink within the flask; increases the duration. In some applications, it is beneficial for the heat sink material to have low a thermal conductivity property because it reduces the rate of thermal transfer within the flask environment while in other applications, it is beneficial for the heat sink material to have a high thermal conductivity property such as when a localized component is dissipating heat within the flask.

High thermal conductivity allows heat to be rapidly pulled away from the heat dissipating component and stored within the heatsink. In this case, the high thermal conductivity property of the heat sink prevents concentrated "hot spots" within the flask's environment. Phase change alloys are also used because the latent heat provides significant thermal absorption but these alloys have a lower volumetric heat capacity than conventional heat sink materials.

Shapes are limited by the practicality of manufacturing. Round is the least expensive shape because round tubes are commercially available and if not available are readily manufactured to necessary sizes. Sizes are limitless and liquid solutions thermos bottle can exceed 9 meters. Long lengths require supports liquid solutions thermos bottle centralize the inner tube within the outer tube. There is the option to have openings on both ends of the flask. The through passage opening incorporates an expansion joint to compensate for the differential in thermal expansion between the outer and inner walls while maintaining the vacuum integrity.

The inner tube is a path for thermal conductance along its length consequently the inner tube's material should have low thermal conductance. Some instruments liquid solutions thermos bottle as magnetometers are sensitive to interference from magnetic materials. The term "non-magnetic" is not specific liquid solutions thermos bottle and too general for design purposes. The application must be defined early in the flask design stage to select the appropriate vacuum flask materials and magnetic testing specifications to match the application.

Various applications for non-magnetic materials are:. Some photomultiplier applications are sensitive to magnetic fields and mu-metal is used in the flask to improve performance by optimizing magnetic shielding while minimizing overall size. Some detector applications are sensitive to the flask materials' gamma ray attenuation properties. Materials with lower gamma ray attenuation properties improve the detector's response by affording increased count levels and count qualities.

Titanium has a low atomic number which reduces its gamma ray attenuation and consequently improves detector responses. In this case, the entire flask must be titanium material because of the difficulties of joining titanium liquid solutions thermos bottle other materials such as stainless. Tungsten has a high atomic number and very high gamma ray attenuation properties.

It is used to selectively shield detectors from gamma rays and also collimate gamma rays to the detectors. Tungsten is built directly into the flask to minimize the overall size, maximize the quantity liquid solutions thermos bottle shielding and optimize the source to detector spacing.

We design and manufacture flasks with transparent windows for cameras and optical sensors in high temperature environments. Liquid solutions thermos bottle include liquid solutions thermos bottle temperature protection liquid solutions thermos bottle video cameras, proximity sensors, bar code readers and lasers.

External flask temperature applications can exceed 1,C 1,F. Benefits of standard temperature electronics over special high temperature electronics are: Standard temperature electronics are drastically less expensive. Standard temperature electronics offer electrical engineers a wider selection of components permitting more design options and access to the newest technology.

Standard temperature electronics decrease project development time which allow projects to come to market sooner more revenue and consequently decrease engineering costs.

Standard temperature electronics allow less expensive future upgrades and easier future evolution paths. Thermal Insulator The thermal insulator's function is to thermally seal the opening of the vacuum flask, displace air to reduce thermal transfer by convection, provide a feed through passage for inputs into the flask, mechanically secure the payload within the flask and provide a method to extract the payload from the flask.

Heat Sink The heat sink's function is to reduce the rate of temperature rise within the flask by absorbing and storing the thermal energy leaking into the flask and the thermal energy dissipated by the payload within the flask. Shapes and Sizes Shapes are limited by the practicality of manufacturing. Openings on Both Ends There is the option to have openings on both ends of the flask. Vacuum Flask Materials Thermal conductivity The inner tube is a path for thermal conductance along its length consequently the inner tube's material should have low thermal conductance.

Stainless, nickel alloys and titanium have low thermal conductivity and are the most common materials. Aluminum and copper have high thermal conductivity and are poor material choices for a vacuum flask. Non-magnetic Some instruments such as magnetometers are sensitive to interference from magnetic materials. Various applications for non-magnetic liquid solutions thermos bottle are: Absolute magnetic measurement Relative magnetic measurement quantifying magnetic change in an environment Electromagnetic induction triggers Magnetic Shielding Some photomultiplier applications are sensitive to magnetic fields and mu-metal is used in the flask to improve performance by optimizing magnetic shielding while minimizing overall size.

Low Attenuation for Gamma Rays Some detector applications are sensitive to the flask materials' gamma ray attenuation properties. High Attenuation for Gamma Rays Liquid solutions thermos bottle has a high atomic number and very high gamma ray attenuation properties. View through double pane vacuum view port. Contact us now to learn more!